Rainbow structures
via algebraic topology

姜子麟 (Zilin Jiang)
Massachusetts Institute of Technology
June 12, 2019
Joint work with Ron Aharoni and Ron Holzman

Rainbow phenomena

132
213
321
Transversal in Latin square

Ryser's conjecture

Every Latin square of odd order has one transversal.

Rainbow reformulation

If an $n$ by $n$ (odd) complete bipartite graph is decomposed into $n$ perfect mathings, then there exists a rainbow perfect matching.

Caccetta–Häggkvist conjecture

Every digraph on $n$ vertices with minimum out-degree $\ge n / r$ has a directed cycle of length $\le r$.

Rainbow generalization

Let $G$ be an edge-colored graph on $n$ vertices. If there are $n$ color classes, each of size $\ge n/r$, then $G$ has a rainbow cycle of length $\le r$.

Common theme

Given edge sets $E_1, \dots, E_m$, find a rainbow set $E$ consists of at most $1$ edge from each $E_i$.

Rainbow matching

Given macthings $E_1, \dots, E_m$,
a rainbow matching $E$ is a matching and a rainbow set

Pokrovskiy: $n$ matchings of size $n+o(n)$ in a bipartite graph have a rainbow matching of size $n$.

Woolbright: $n$ matchings of size $n$ in a bipartite graph have a rainbow matching of size $n - \sqrt{n}$.

Question:   ?   matchings of size $n$ in a bipartite graph have a rainbow matching of size $n$.


$(n-1)$ x red matching of size $n$ + $(n-1)$ x blue matching of size $n$

Answer: $2n-1$ matchings of size $n$ in a bipartite graph have a rainbow matching of size $n$.

Drisko: $2n-1$ perfect matchings of size $n$ in a bipartite graph have a rainbow perfect matching.

Plan of talk

Geometric proof of Drisko

Topological toolkit

Applications

Bárány's Colorful Carathéodory

If $x \in \mathbb{R}^d$ lies in $\mathrm{conv}(P_k)$ for $k=1,2, \dots, d+1$ then $x$ lies in the convex hull of a rainbow set.

Cone version

If $x \in \mathbb{R}^d$ lies in $\mathrm{pos}(P_k)$ for $k=1,2,\dots,d$ then $x$ lies in the positive cone of a rainbow set.

Drisko: $2n-1$ perfect matchings of size $n$ in a bipartite graph have a rainbow perfect matching.

Standard basis of $\mathbb{R}^{2n}$: $u_1, \dots, u_n$, $v_1, \dots, v_n$
edge $u_i \sim v_j$ $\Leftrightarrow$ $u_i + v_j \in \mathbb{R}^{2n}$
edge set $E_k$ $\Leftrightarrow$ $P_k := \big\{u_i + v_j : u_i\sim v_j \text{ in }E_k\big\}$
$E_k$ is perfect matching $\Leftarrow$$\Rightarrow$ $\vec{1} := \sum u_i + \sum v_i \in \mathrm{pos}(P_k)$
Fix: $P_k$ and $\vec{1}$ live in a 1-codimensional subspace of $\mathbb{R}^{2n}$
Bárány: $\vec{1}$ is in the cone of a rainbow set $x_1 \in P_1, \dots, x_{2n-1}\in P_{2n-1}$
$\Rightarrow$ a rainbow perfect matching

Aharoni–Berger

$2n-1$ matchings of size $n$ in a bipartite graph have a rainbow matching of size $n$.

Standard basis of $\mathbb{R}^{?}$: $u_1, u_2, \dots$, $v_1, v_2, \dots$
No control on dimension of ambient space

Plan of talk

Geometric proof of Drisko

Topological toolkit

Applications

Simplicial complex $\mathcal{C}$ is a family of sets such that $\sigma \subseteq \tau, \tau \in \mathcal{C} \implies \sigma\in \mathcal{C}$.

$V = \{1,2,3,4\}$, $\mathcal{C} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}, \{3,4\}\}$

Kalai–Meshulam

Let $V_1, \dots, V_{d+1} \subset V$. If $\mathcal{C}$ is a $d$-Leray simplicial complex on $V$ and no $V_k$ is in $\mathcal{C}$, then a rainbow set is not in $\mathcal{C}$.

"Definition" $\mathcal{C}$ is $d$-Leray if $\mathcal{C}$ does not have "holes" of dimension $\ge d$.

Kalai–Meshulam

Let $V_1, \dots, V_{d+1} \subset V$. If $\mathcal{C}$ is a $d$-Leray simplicial complex on $V$ and no $V_k$ is in $\mathcal{C}$, then a rainbow set is not in $\mathcal{C}$.

Bárány

If $x \in \mathbb{R}^d$ lies in $\mathrm{conv}(P_k)$ for $k=1,2, \dots, d+1$ then $x$ lies in the convex hull of a rainbow set.

Proof sketch (Kalai–Meshulam $\implies$ Bárány)
Construct $\mathcal{C}$ on $V$ such that $x\in \mathrm{conv}(P_k) \Leftrightarrow V_k \not\in \mathcal{C}$
Kalai–Meshulam: if $\mathcal{C}$ is $d$-Leray then a rainbow set $\not\in\mathcal{C}$
$\Rightarrow$ $x \in \mathrm{conv}($a rainbow set$)$.

How to prove $\mathcal{C}$ is $d$-Leray?

Wegner

$d$-representable
Bárány
geometric
$\subset$$d$-collapsible
$\Leftarrow$
combinatorial
$\subset$$d$-Leray
Kalai–Meshulam
topological

Elementary $d$-collapse

1. Pick $\sigma \in \mathcal{C}$ such that $|\sigma|\le d$
2. If max face $\tau \supseteq \sigma$ is unique then remove $[\sigma, \tau]$

$\mathcal{C}$ is $d$-collapsible if a chain of elementary $d$-collapses would turn $\mathcal{C}$ into $\{\emptyset\}$

Plan of talk

Geometric proof of Drisko

Topological toolkit

Applications

Kalai–Meshulam

Let $V_1, \dots, V_{d+1} \subset V$. If $\mathcal{C}$ is a $d$-collapsible simplicial complex on $V$ and no $V_k$ is in $\mathcal{C}$, then a rainbow set is not in $\mathcal{C}$.

Aharoni–Berger

$2n-1$ matchings of size $n$ in a bipartite graph have a rainbow matching of size $n$.

Proof sketch (Kalai–Meshulam $\implies$ Aharoni–Berger)
$V := E_1 \cup \dots \cup E_{2n-1}$, $\mathcal{C} := \{ E\subset V : \nu(E) < n \}$
$\nu(E)$ is the matching number of $E$

Kalai–Meshulam: If $\mathcal{C}$ is $(2n-2)$-collapsible then a rainbow set is not in $\mathcal{C}$
$\Rightarrow$ a rainbow mathching of size $\ge n$.

Business model

  1. Pick your favorite graph parameter $\nu$
  2. Prove $\mathcal{C} := \{ E : \nu(E) < n\}$ is $d$-collapsible
  3. Apply Kalai–Meshulam

Rainbow result: Edge sets $E_1, \dots, E_{d+1}$ with $\nu(E_k) \ge n$ have a rainbow set $E$ with $\nu(E) \ge n$.

Aharoni, Holzman, J.

Given $r\in\mathbb{N}$, $n\in\mathbb{N}$ and $r$-partite edge sets $E_1, \dots, E_{rn-r+1}$ with $\nu^*(E_i) \ge n$ there is a rainbow set $E$ with $\nu^*(E) \ge n$.

Here the fractional matching number $\nu^*(E) = \max_f\sum_{e\in E} f(e)$
s.t. $f(e)\ge 0$ for $e\in E$ and $\sum_{e\ni v} f(e) \le 1$ for $v\in V$.

Easter egg

Drisko's theorem

$2n-1$ perfect matchings of size $n$ in a bipartite graph have a rainbow perfect matching.

Erdős–Ginzburg–Ziv

Given $2n-1$ numbers in $\mathbb{Z}/n \mathbb{Z}$, there exist $n$ of them that sum to $0$.

Alon's proof (Drisko $\implies$ Erdős–Ginzburg–Ziv)

For each number $a_i$, let $E_i$ be matching $\{ x \sim x + a_i\}$
Drisko: there is a rainbow matching of size $n$
$1 \sim 1 + a_{i_1}, \dots, n \sim n + a_{i_n}$
Rainbow means $i_1, \dots, i_n$ are different
$\implies 1 + \dots + n = (1 + a_{i_1}) + \dots + (n + a_{i_n})$

An open problem

3 x blue+ 3 x red+ 1 x green
no rainbow matching of size $4$

Conjecture
$2n$ matchings of size $n$ in any graph have a rainbow matching of size $n$.

Aharoni, Berger, Chudnovsky, Howard, Seymour

$3n-2$ matchings of size $n$ have a rainbow matching of size $n$.

姜子麟 (Zilin Jiang)
Massachusetts Institute of Technology
zilinj@mit.edu